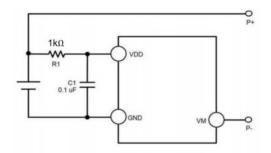


概述

XR2132A 是一款内置 MOSFET 的单节锂电池保护 芯片。该芯片具有非常低的功耗和非常低 阻抗 的内置 MOSFET。该芯片有充电过压, 充电过 流,放电过压,放电过流,过热,短路等各项 4 可耐 9V 充电器电压 保护等功能,确保电芯安全,高效的工作。 XR2132A 采用 SOT-23 封装,外围只需要一个 电阻和一个电容,应用极其简洁,工作安全 可靠。

应用


单节锂离子可充电电池组 单节锂聚合物可充 电电池组

自动激活问题

电阻 R1阻值 100Ω - $1k\Omega$, 电容 C1 容值 0-1uF, 接电芯后芯片能够自动激活, 芯片正常工作。

特性

- 1内置 55 mΩ MOSFET
- 2 SOT-23 封装
- 3 内置过温保护
- 5 两重过放电流检测保护
- 6 超小静态电流和休眠电流
 - A 静态工作电流为 1.4 uA
 - B 休眠电流为 0.3 uA
- 7 符合欧洲 "ROHS" 标准的无铅产品

封装和引脚

GND	管脚	符号	管脚描述
	1	VM	充电器或负载负电压接入端
<u> </u>	2,	VDD	电源端
VM VDD	3	GND	芯片地,接电池芯负极

订货信息

型号	封装	过充检 测电压 (V)	过充解 除电压 (V)	过 放 检 测电压 (V)	过 放 解 除电压 (V)	过流检 测电流 (A)	打印标记
XR2132A	S0T-23	4. 30	4. 10	2. 45	3.0	3.8	R312A xxxx

注意:打印标记的 xxxx 为字母和数字,用于产品批次识别。

原理图

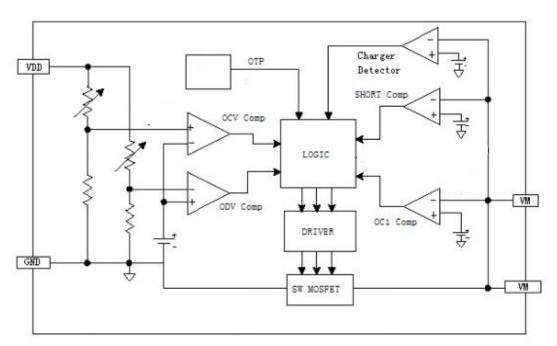


Figure 1. 原理图

绝对最大额定值

参 数	符号	最小值	最大值	单位
供电电压 (VDD 和 GND 间电压)	VDD	-0.3	8.0	V
充电器输入电压(VM和GND间电压)	VM	-8.0	11.0	V
存贮温度范围	TSTG	-55	145	° C
结温	ТJ	-40	145	° C
功率损耗 T=25°C	PMAX		400	mW
ESD	HBM		4000	V

注:各项参数若超出"绝对最大值"的范围,将有可能对芯片造成永久性损伤。以上给出的仅是极限范围,在这样的极限条件下工作,芯片的技术指标将得不到保证。长期工作在"绝对最大值"附近,会影响到芯片的可靠性。

推荐工作条件

参 数	符号	最小值	最大值	单 位
供电电压 (VDD 和 GND 间电压)	VDD	0	6.0	V
充电器输入电压(VM 和 GND 间电压)	VM	-6.0	6.0	V
存贮温度范围	TSTG	-40	85	°C

电器参数

除非特殊说明, T_A = 27^oC, VDD=3.7V

项目	符号	条件	最小值	典型值	最大值	单位
检测电压						
过充检测电压	Vocv		4. 25	4.30	4. 35	V
过充解除电压	Vocr		4. 03	4.10	4. 17	V
过放检测电压	Vodv		2.35	2.45	2. 55	V
过放解除电压	Vodr		2.9	3.0	3. 1	V
检测电流						
过放电流检测1	IOCI1		3.0	3.8	5. 2	A
过放电流检测 2	IOC12		5	7	9	A
短路电流检测	ISHORT		8	11	14	A
充电电流检测	ICHA		2.8	3.8	5. 5	A
电流损耗						•
工作电流	IOPE	VM 悬空		1.4	4.0	μА
休眠电流	IPDN	VDD=1.8V		0.3	1.0	μА
VM 上下拉电流						•
内部上拉电流	IPU			12		μА
内部下拉电流	IPD	VM=1. OV		16		μА
FET 内阻						
VM到GND内阻	RDS (ON)	$I_{VM} = 1.0A$	50	55	60	mΩ
过温保护						
过温保护检测温度	TSHD			155		$^{\circ}$
过温保护释放温度	TSHR			120		
检测延时						
过充检测电压延时	Tocv			100		mS
过放检测电压延时	TODV			50		mS
过放电流 1 检测延时	TIOV1			6		mS
过放电流 2 检测延时	TIOV2			1.5		mS
短路电流检测延时	TSHORT			150		uS

功能描述

XR2132A 监控电池的电压和电流,并通过断开充电器或者负载,保护单节可充电锂电池不会因为过充电压、过放电压、过放电压、过放电流以及短路等情况而损坏。这些功能都使可充电电池工作在指定的范围内。该芯片仅需一颗外接电容和一个外接电阻,MOSFET已内置,等效电阻的典型值为50mΩ。

XR2132A 支持四种运行模式: 正常工作模式、充电工作模式、放电工作模式和休眠工作模式。

- 1. 正常工作模式 如果没有检测到任何异常情况, 充电和放电 过程都将自由转换。这种情况称为正常工作模式。
- 2. 过充电压情况 在正常条件下的充电过程中,当电池电压高于过充检测电压(Vocv),并持续时间达到过 充电压检测延迟时间(Tocv)或更长,XR2132A 将控制MOSFET以停止充电。这种情况称为过 充电压情况。如果异常情况在过充电压检测 延迟时间(Tocv)内消失,系统将不动作。 以下两种情况下,过充电压情况将被释放:
- (1). 充电器连接情况下, VM 端的电压低于 充电器检测电压Vcha, 电池电压掉至过充释 放电压(Vock)。
- (2). 充电器未连接情况下,电池电压掉至过充检测电压(Vocv)。当充电器未被连接时,电池电压仍然高于过充检测电压,电池将通过内部二极管放电。
- 3. 过充电流情况 在充电工作模式下,如果电流的值超过ICHA 并持续一段时间(TOCII)或更长,芯片将控制MOSFET 以停止充电。这种情况被称为过 充电流情况。XR2132A将持续监控电流状态,连接负载或者充电器断开,芯片将释放过充 电流情况。

- 4. 过放电压情况 在正常条件下的放电过程中,当电池电压掉 至过放检测电压(Vopv),并持续时间达到过 放电压检测延迟时间(Topv)或更长,XR2132A 将切断电池和负载的连接,以停止放电。这种情况被称为过放电压情况。此时放电控制 MOSFET断开,内部上拉电流管打开。当VDD 电压小于等于1.8V(典型值),电流消耗将降低至休眠状态下的电流消耗(IPDN)。这种情况被称为休眠情况。当VDD电压等于2.1V(典型值)或更高时,休眠条件将被释放。电池电压大于等于过放检测释放电压(VODR)时,XR2132A 将回到正常工作条件。
- 5. 过放电流情况 (过放电流1检测)如果放电电流超过额定值,且持续时间大于等于过放电流检测延迟时间,电池和负载将被断开。如果在过放电流检测延迟时间内,电流又降至额定值范围之内,系统将不动作。芯片内部下拉电流下拉VM,当VM的电压小于或等于过放电流1的参考电压,过放电流状态将被复位。
- 6. 负载短路电流情况 若VM管脚的电压小于等于短路保护电压(VSHORT),系统将停止放电电池和负载的连接将断开。TSHORT 是切断电流的最大延迟时间。当VM的电压小于或等于过放电流1的参考电压,负载短路状态将被复位。
- 7. **充电器检测** 当处于过放电状态下的电池和充电器相连, 若VM 管脚电压小于等于充电器检测电压 VCHA, 当电池电压大于等于过放检测电压 VODV, XR2132A将释放过放电状态。
- 8. 0V充电 可以0V充电,电池电压低于2.3V,充电芯片进入休眠状态,此时MOS断开,芯片通过体二极管充电。电池电压低于2.3V,充电电流不能大于200mA,以免电池和芯片损坏。

时序图

1. 过充(OCV) →放电 →正常工作

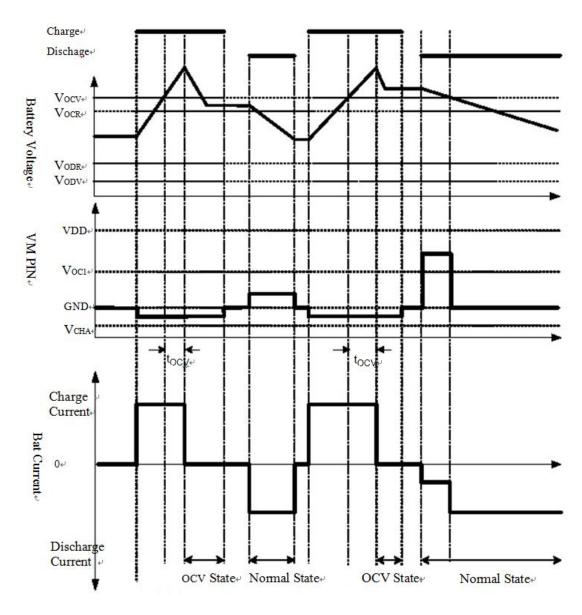


Figure 2. 充电,放电,正常工作时序图

2. 过放(ODV) →充电 →正常工作

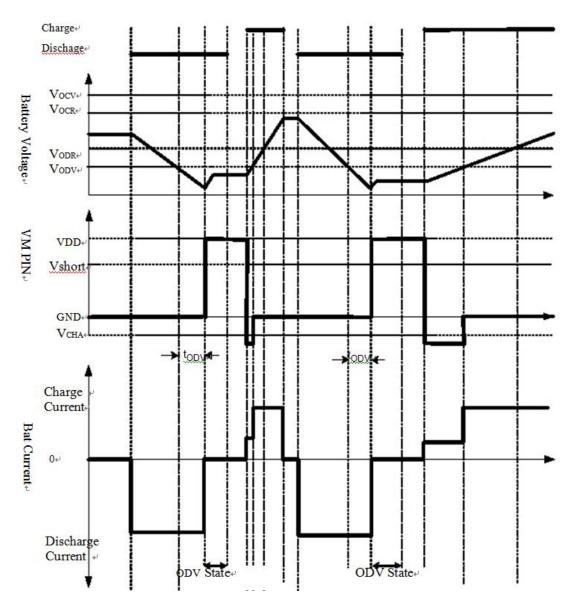


Figure 3. 过放, 充电和正常工作时序图

3. 放电过流 (ODC) →正常工作

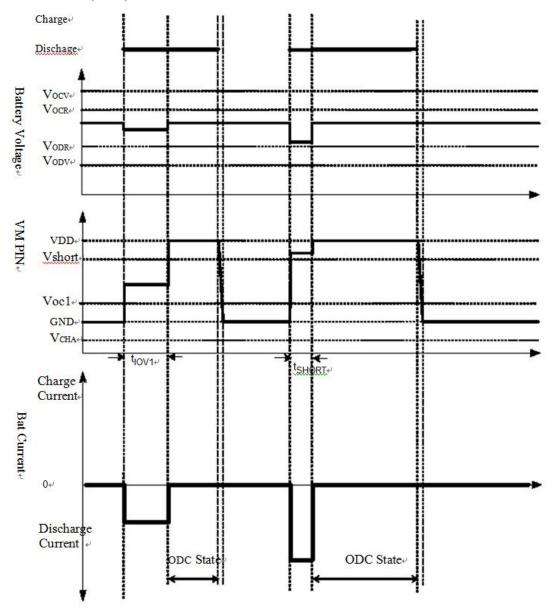
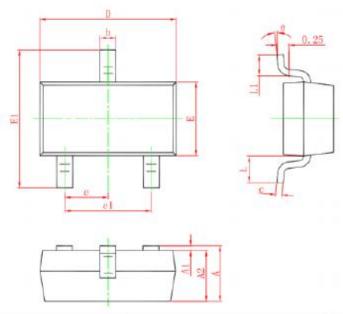



Figure 4. 放电过流和正常工作时序图

PACKAGE OUTLINE

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950	TYP.	0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	O ₀	8°	O°	8°	