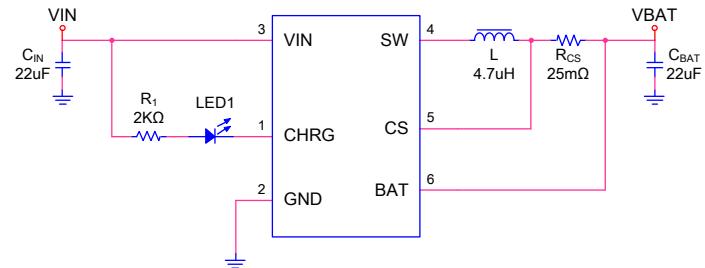


2.5A Synchronous Buck Li-ion Charger

General Description

The XR4059 is a 2.5A Li-ion battery charger. It utilizes a 600KHz synchronous buck converter topology to reduce power dissipation during charging. Low power dissipation and internal MOSFET allow a physically small charger that can be embedded in a wide range of handheld applications. The XR4059 includes complete charge termination circuitry, automatic recharge and $\pm 1\%$ 4.2V float voltage.

Additional features include shorted cell detection; temperature qualified charging and overvoltage protection. The XR4059 is available in a low profile SOT23-6 package.


Applications

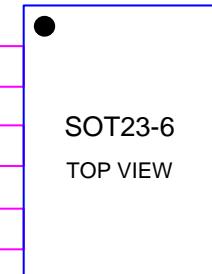
- ✧ Portable Media Players
- ✧ Cellular and Smart mobile phone
- ✧ PDA/DSC
- ✧ Handheld Battery-Powered Devices
- ✧ Handheld Computers
- ✧ Charging Docks and Cradles

Features

- ◆ Input voltage range 4.5V~5.5V
- ◆ Dynamic input current allocation for maximum charging rate
- ◆ 2.5A Maximum Charge Current
- ◆ No External MOSFETs and Blocking Diode Required
- ◆ Efficiency up to 90%
- ◆ Constant-Current/Constant-Voltage Charger
- ◆ Over Current Protection
- ◆ Consumption Available in SOT23-6
- ◆ RoHS Compliant and 100% Lead (Pb)-Free

Typical Application Circuit

The C_{IN} must be as close as possible to the chip.


Marking Information

Device	Marking	Package	Shipping
XR4059	XR4059	SOT23-6	3K/REEL

Functional Pin Description

Package Type	SOT23-6		
Pin Configurations	CHRG	1	BAT
	GND	2	CS
	VIN	3	SW

SOT23-6
TOP VIEW

Pin Description

Pin No.	Name	Description
1	CHRG	Open-Drain charge status output. When the battery is charging, this pin is pulled low by an internal N-channel MOSFET.
2	GND	Ground.
3	VIN	Positive Supply Voltage Input. Decouple with a 22 μ F or larger surface mounted ceramic capacitor.
4	SW	Switch pin. Connect to external inductor.
5	CS	Current Sense pin.
6	VBAT	Battery pin.

Absolute Maximum Ratings

- ✧ VIN pin to GND ----- 7V
- ✧ BAT pin to GND ----- 7V
- ✧ Other pin to GND ----- 7V
- ✧ Maximum Junction Temperature ----- 150°C
- ✧ Operating Ambient Temperature Range (T_A) ----- -20°C to 85°C
- ✧ Maximum Soldering Temperature (at leads, 10 sec) ----- 260°C

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Thermal Information

- ✧ Maximum Power Dissipation (SOT23-6, P_D , $T_A=25^\circ\text{C}$) ----- 0.6W
- ✧ Thermal Resistance (SOT23-6, θ_{JA}) ----- 195°C/W

Recommended Operating Conditions

- ✧ Ambient Temperature Range ----- -20°C to 85°C

ESD Susceptibility

- ✧ HBM(Human Body Mode) ----- 2KV
- ✧ MM(Machine Mode) ----- 200V

Electrical Characteristics

(The specifications which apply over the full operating temperature range, otherwise specifications are at $T_A=25^\circ\text{C}$, $V_{IN} = 5\text{V}$, unless otherwise noted.)

Symbol	Parameter	Condition	Min	Typ	Max	Units
V_{IN}	Adapter/USB Voltage Range		4.5		5.5	V
I_{CC}	Input Supply Current	Standby Mode (Charge Terminated)		0.1		mA
V_{FLOAT}	Regulated Output (Float) Voltage		4.158	4.2	4.242	V
V_{CS}	Current Sense Reference Voltage (For CS to BAT)	$V_{TRIKL} < V_{BAT} < V_{FLOAT}$		50		mV
I_{BAT}	BAT Pin Current	$R_{CS}=50\text{m}\Omega$, Current Mode		1000		mA
		$R_{CS}=25\text{m}\Omega$, Current Mode		2000		mA
		Standby Mode			1.5	μA
I_{TRIKL}	Trickle Charge Current	$1\text{V} < V_{BAT} < V_{TRIKL}$, $R_{CS}=50\text{m}\Omega$		100		mA
V_{TRIKL}	Trickle Charge Threshold Voltage	$R_{CS}=50\text{m}\Omega$, V_{BAT} Rising		2.8		V
V_{TRHYS}	Trickle Charge Hysteresis Voltage	$R_{CS}=50\text{m}\Omega$		100		mV
V_{REG}	Input Regulation Voltage			4.4		V
V_{CHRG}	CHRG Pin Output Low Voltage	$I_{CHRG}=5\text{mA}$			0.5	V
ΔV_{RECHRG}	Recharge Threshold Voltage	$V_{FLOAT}-V_{RECHRG}$		150		mV
T_{LIM}	Junction Temperature in Constant Temperature Mode			135		$^\circ\text{C}$
I_{TERM}	C/10 Terminal Current	$R_{CS}=50\text{m}\Omega$		100		mA
UVLO	Under Voltage Lockout of V_{IN}	V_{IN} rising		4.1		V
		V_{IN} falling		3.9		V
V_{OVP}	Over Voltage Protection of V_{IN}	V_{IN} rising		6.0		V
		V_{IN} falling		5.7		V
F_{osc}	Switch Frequency	$V_{IN}=5\text{V}$, Current Mode		600		KHz

Application Information

XR4059 is a 2.5A synchronous buck Li-ion battery charger integrates 600KHz switching frequency and full protection functions. The charge current up to 2.5A can be programmed by using the external resistor for different portable applications and indicates the charger current information simultaneous.

In constant current mode, the charge current is set by the external sense resistor R_{CS} and an internal 50mV reference;

$$I_{BAT} = V_{CS}/R_{CS} = 50mV/R_{CS}$$

When the battery voltage approaches the programmed float voltage, the charge current will start to decrease. When the current drops to 10% of the full-scale charge current, an internal comparator turns off the charger.a charge cycle is terminated.

Input Source Qualification

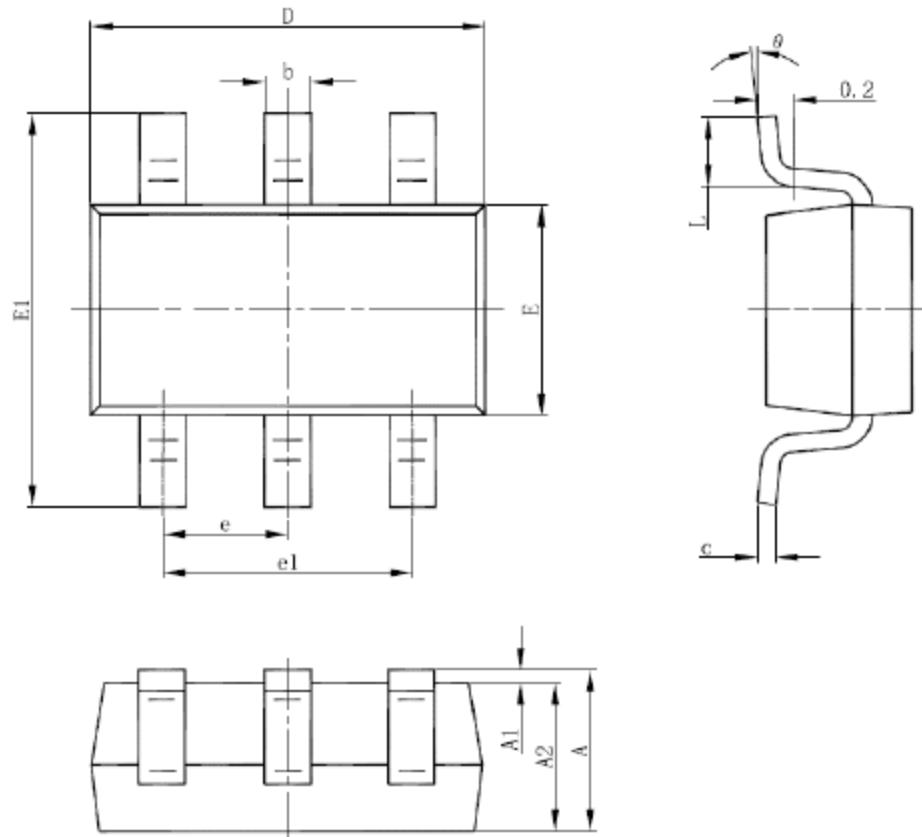
After REG amplifier powers up, the XR4059 checks the current capability of the input source. The input source has to meet the $V_{IN} > 4.4V$ to enable the chip.

Inductor Selection

Operating frequency was chosen for the buck switcher in order to minimize the size of the inductor. However, take care to use inductors with low core loss at this frequency. To calculate the inductor ripple current:

$$\Delta I_L = \frac{V_{BAT} - \frac{V_{BAT}^2}{V_{IN}}}{L \times f}$$

Automatic Recharge


Once the charge cycle is terminated, the XR4059 continuously monitors the voltage on the BAT pin using a comparator with a 1.8ms filter time ($t_{RECHARGE}$). A charge cycle restarts when the battery voltage falls below 4.05V (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations.

Layout Considerations

To minimize radiation, the SW pin and input bypass capacitor leads (between VIN and GND) should be kept as short as possible. A ground plane should be used under the switching circuitry to prevent inter plane coupling. The other paths contain only DC and/or 600KHz tri-wave ripple current and are less critical. With the exception of the input and output filter capacitors (which should be connected to GND) all other components that return to ground should be connected to GND.

Packaging Information

SOT-23-6 Package Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°