

24V, 2 μ A IQ, High PSRR, 500mA Low-Dropout LDO

Description

The XR75XX series are high accuracy, CMOS LDO Voltage Regulators, offering Low Power Consumption, high ripple rejection ratio and low dropout. Internally, The XR75XX includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators. The XR75XX's current limiters' foldback circuit also operates as a short protect for the output current limiter and the output pin.

The XR75XX series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The CE function allows the output of regulator to be turned off, resulting in greatly reduced power consumption, ideal for powering the battery equipment to a longer service life.

Features

- Low Power Consumption: 2 μ A (Typ)
- Maximum Output Current: 500mA
- Low Dropout Voltage: 150mV@100mA (V_{OUT}=3.3V)
- Operating Voltage Range: 2.5V ~ 24V
- Output Voltage Accurate: \pm 1%
- High PSRR: 70dB @1kHz
- Good Transient Response
- Integrated Short-Circuit Protection
- Over-Temperature Protection
- Output Current Limit
- Low Temperature Coefficient
- Stable with Ceramic Capacitor
- RoHS Compliant and Lead (Pb) Free
- -40°C to +85°C Operating Temperature Range
- Fixed Output Voltage Versions: 1.8, 2.5, 2.8, 3.0, 3.3, 3.6, 4.0, 4.2, 4.4 and 5.0V
- Available in Green SOT23-3, SOT23-5, SOT89-3, SOT89-5, DFN2x2-6L Packages

Applications

- Portable, Battery Powered Equipment
- Smoke detector and sensor
- Audio/Video Equipment
- Weighting Scales
- Home Automation
- Electronic fingerprint lock

Application Circuits

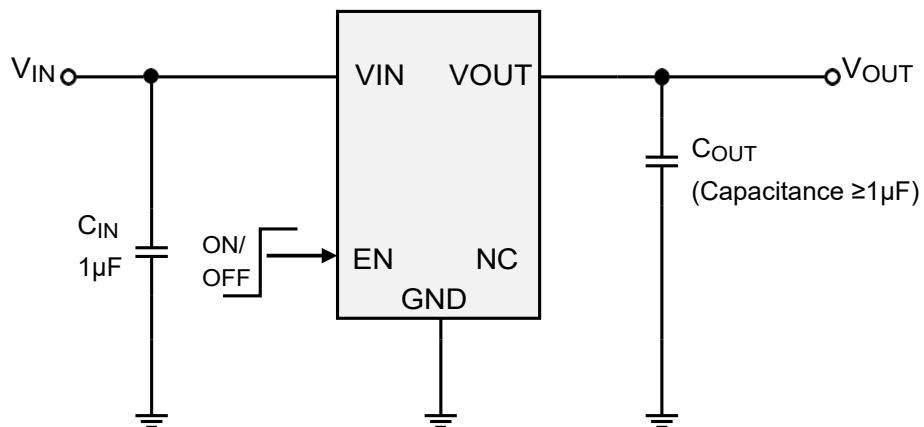
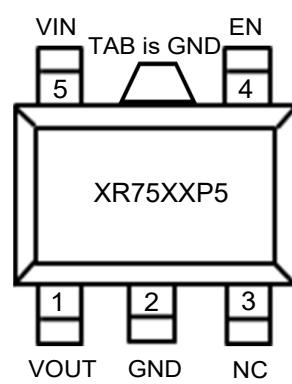
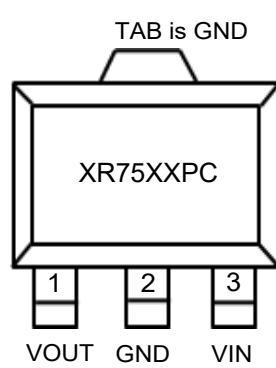
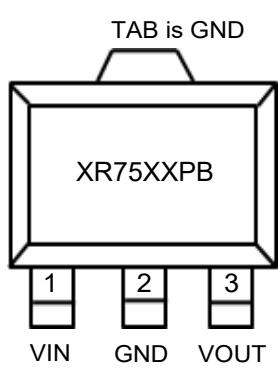
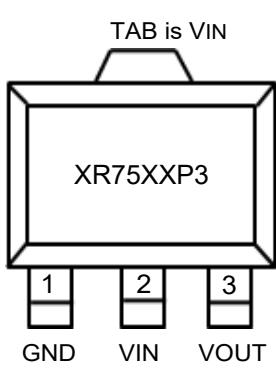
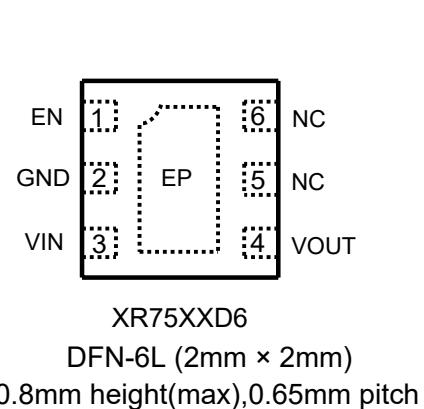
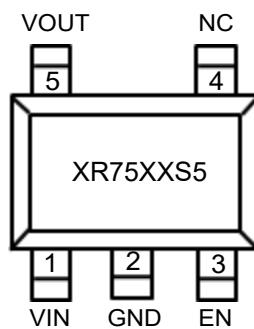
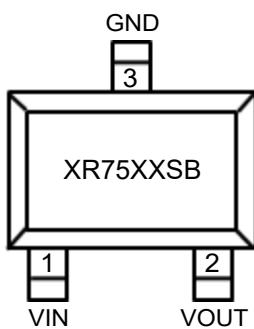
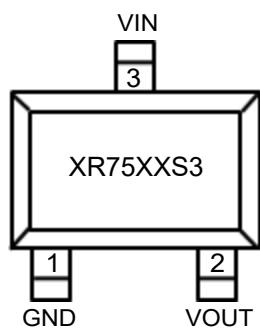










Figure 1. XR75XX Typical Application Circuit

Pin Configuration (TOP VIEW)

Pin Description

Pin No.								Pin Name	Pin Function
SOT23-3		SOT89-3			SOT23-5	SOT89-5	DFN2X2-6		
S3	SB	P3	PB	PC	S5	P5	D6		
1	3	1	2	2	2	2	2	GND	Ground
3	1	2	1	3	1	5	3	VIN	Power Input
2	2	3	3	1	5	1	4	VOUT	Output Voltage
----	----	----	----	----	3	4	1	EN	Enable Control Input
----	----	----	----	----	4	3	5、6	NC	No Connect
EP / TAB		In PCB layout, prefer to use large copper area to cover this pad for better thermal dissipation							

Order Information

XR75 ①② ③④

Designator	Symbol	Description
①②	Integer e.g 1.8=18	Output Voltage 1.8,2.5,2.8,3.0,3.3,3.6,4.0,4.2,4.4 and 5.0V
③④	S3 , S5 , D6 , P3 , P5	SOT23-3L , SOT23-5L , DFN6L , SOT89-3L , SOT89-5L

Part NO.	Description	Package	T/R Qty
XR75XXS3		SOT23-3L	3,000 PCS
XR75XXS5		SOT23-5L	3,000 PCS
XR75XXD6		DFN2X2-6L	5,000 PCS
XR75XXP3		SOT89-3L	1,000 PCS
XR75XXP5		SOT89-5L	1,000 PCS

Marking Information

For marking information, contact our sales representative directly

All AISIS parts are Pb-Free and adhere to the RoHS directive.

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Supply Input Voltage	V _{IN}	-0.3 ~ 24	V
EN to GND	V _{EN}	-0.3 ~ 24	V
Regulated Output Voltage	V _{OUT}	-0.3 ~ 6.0	V
Output Current	I _{OUT}	Internally limited	mA
Power Dissipation P _D @ T _A =+25°C	SOT23-3L	450	mW
	SOT23-5L	500	
	SOT89-3L	700	
	SOT89-3L(B/C-Type)	950	
	SOT89-5L	1000	
	DFN2X2-6L	500	
Thermal Resistance (Junction to air)	SOT23-3L	275	°C /W
	SOT23-5L	250	
	SOT89-3L	180	
	SOT89-3L(B/C-Type)	130	
	SOT89-5L	125	
	DFN2X2-6L	250	
Human Body Model (HBM)		±4000	V
Charged Device Mode (CDM)		±2000	V
Machine Mode (MM)		200	V
Storage Temperature Range	T _{STG}	-65 ~ +150	°C
Operating Junction Temperature	T _J	+150	°C
Lead Temperature (Soldering 10s)	T _{LEAD}	+260	°C

Note:

1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended period may affect device reliability.
2. Ratings apply to ambient temperature at +25°C
3. The package thermal impedance is calculated in accordance to JESD 51-7.

Recommended Operating Conditions

Item	Min	Max	Unit
Operating Ambient Temperature	-40	+85	°C
Input Voltage	2.5	12	V
Output Voltage	1.8	5.0	V

Electronic Characteristics

Test Conditions: $V_{IN} = V_{OUT} + 1V$, $C_{IN} = C_{OUT} = 1\mu F$, $TA = 25^\circ C$, unless otherwise specified

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
Input Voltage	V_{IN}			2.5	—	24	V
Quiescent Current	I_Q	$V_{IN} = 12V$, $I_{LOAD} = 0mA$		—	2	—	μA
Shutdown Current	I_{SHDN}	$EN = 0V$, $V_{OUT} = 0V$		0	0.2	—	μA
Output Voltage	V_{OUT}	$V_{IN} = 12V$, $I_{LOAD} = 1mA$	$V_{OUT} \times 0.99$	—	$V_{OUT} \times 1.01$	—	V
Output Current	I_{OUT}	$V_{IN} = V_{OUT} + 1V$	500	—	—	—	mA
Dropout Voltage $V_{OUT} = 3.3V$	V_{DROP}	$I_{LOAD} = 100mA$	—	150	—	—	mV
		$I_{LOAD} = 300mA$	—	400	—	—	
		$I_{LOAD} = 500mA$	—	700	—	—	
Line Regulation	ΔV_{LINE}	$I_{LOAD} = 10mA$ $V_{OUT} + 1.0V \leq V_{IN} \leq 20V$	—	0.05	—	—	% / V
Load Regulation	ΔV_{LOAD}	$V_{IN} = V_{OUT} + 1V$ $1mA \leq I_{LOAD} \leq 100mA$	—	5	20	—	mV
EN Threshold Voltage	V_{CEH}	CE "High" Voltage	1.5	—	—	—	V
	V_{CEL}	CE "Low" Voltage	—	—	0.4	—	V
EN PIN Current	I_{EN}			—	0.1	—	μA
Current Limit	I_{LIMIT}			—	—	750	mA
Short Current	I_{SHORT}	$V_{OUT} = GND$	—	100	—	—	mA
Output Noise Voltage	V_{ON}	$C_{OUT} = 1\mu F$, $I_{LOAD} = 10mA$ $BW = 10Hz \sim 100kHz$	—	45	—	—	μV_{rms}
Power Supply Rejection Rate	PSRR	$V_{IN} = 4.3V$	$f = 100Hz$	—	85	—	dB
		$V_{OUT} = 3.3V$	$f = 1kHz$	—	70	—	dB
		$I_{LOAD} = 10mA$	$f = 10kHz$	—	50	—	dB
Thermal Shutdown Temperature	T_{SHDN}	—		—	160	—	$^\circ C$
Thermal Shutdown Hysteresis	ΔT_{SHD}	—		—	20	—	$^\circ C$

Note : All limits specified at room temperature ($TA = 25^\circ C$) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

Functional Block Diagram

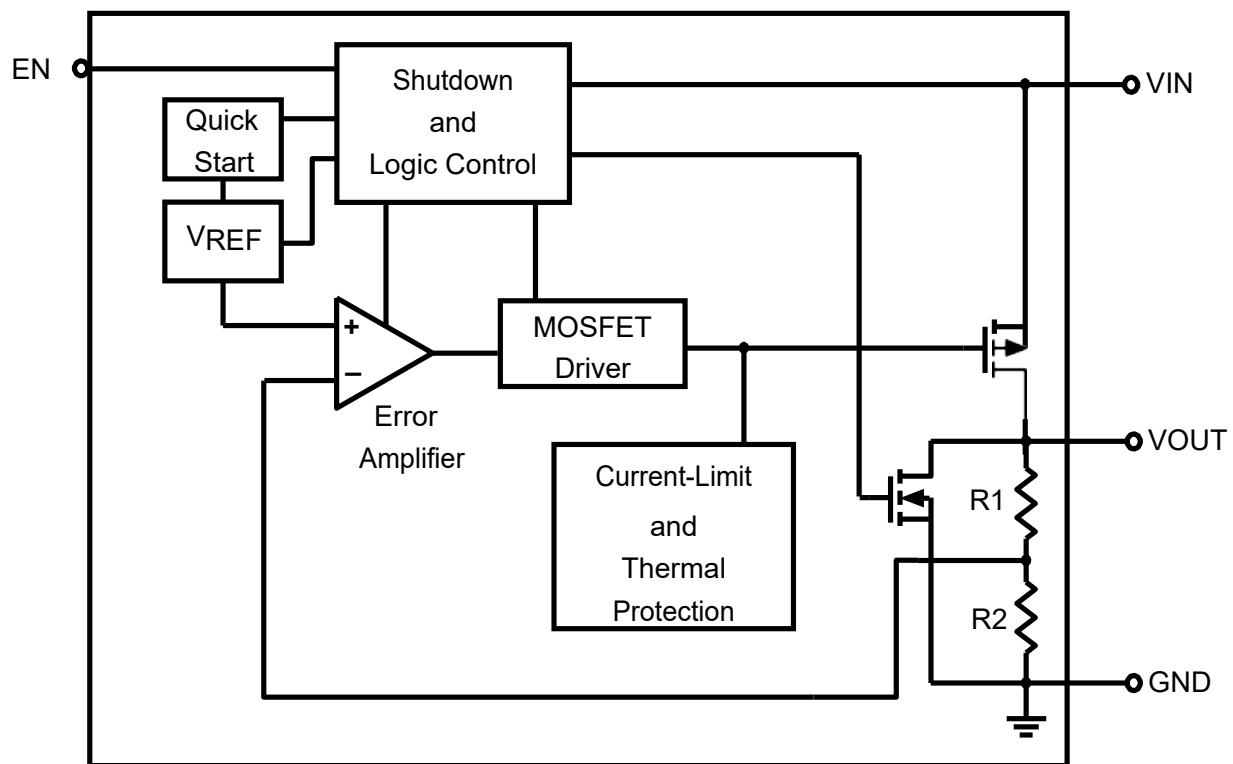


Figure 2. XR75XX Block Diagram

Application Guideline

■ Input Capacitor

A $\geq 1\mu\text{F}$ ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

■ Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is $\geq 1\mu\text{F}$, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

■ Dropout Voltage

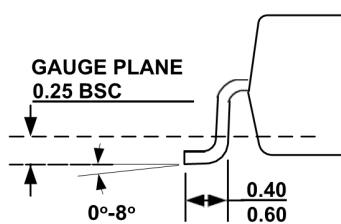
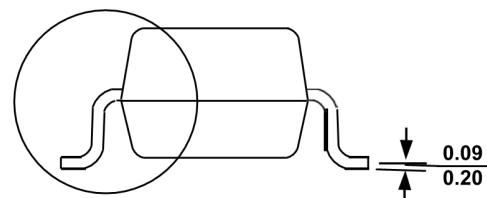
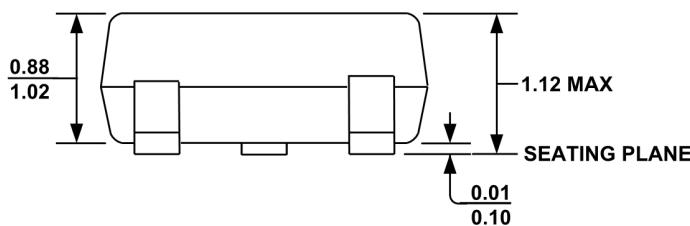
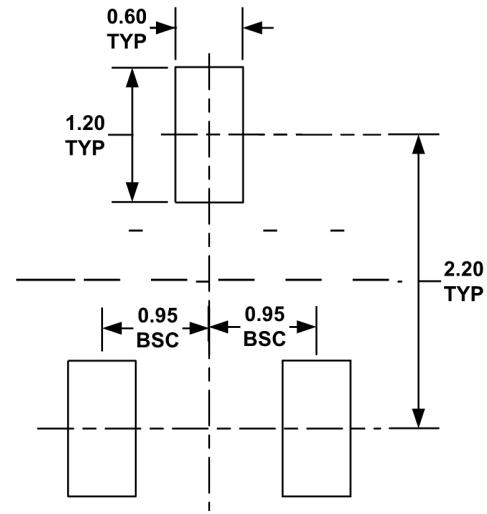
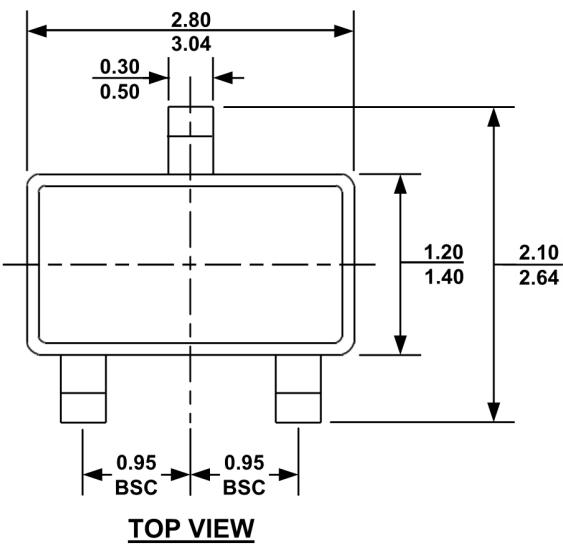
The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage V_{DROP} also can be expressed as the voltage drop on the pass-FET at specific output current (I_{RATED}) while the pass-FET is fully operating at ohmic region and the pass-FET can be characterized as an resistance $R_{\text{DS(ON)}}$. Thus the dropout voltage can be defined as ($V_{\text{DROP}} = V_{\text{IN}} - V_{\text{OUT}} = R_{\text{DS(ON)}} \times I_{\text{RATED}}$). For normal operation, the suggested LDO operating range is ($V_{\text{IN}} > V_{\text{OUT}} + V_{\text{DROP}}$) for good transient response and PSRR ability. Vice versa, while operating at the ohmic region will degrade the performance severely.

■ Thermal Application

For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below:

$T_A = 25^\circ\text{C}$, AISIS DEMO PCB

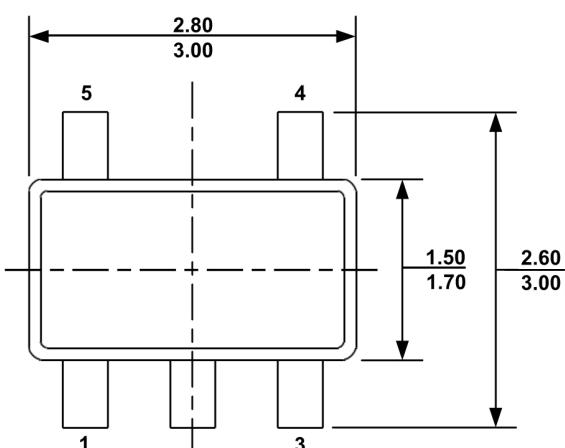
The max $P_D = (T_j - T_A) / \theta_{JA}$.

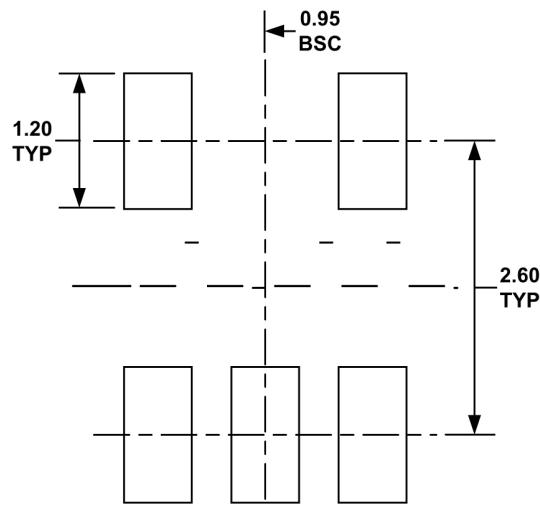





Power dissipation (P_D) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT}$$

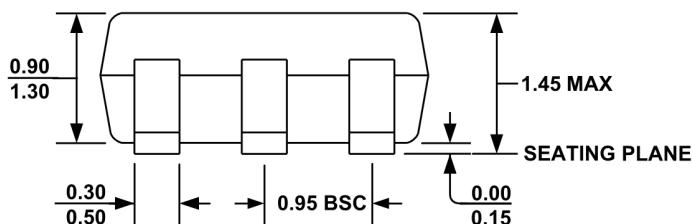
■ Layout Consideration

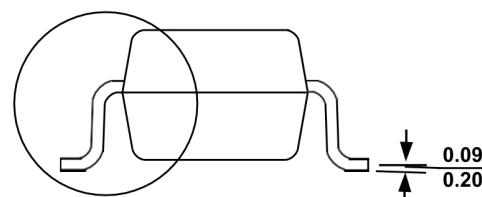
By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the XR75XX ground pin using as wide and as short of a copper trace as is practical. Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.

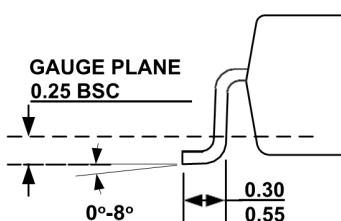

PACKAGE OUTLINE DRAWING FOR SOT23-3


NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING IS NOT TO SCALE.
- 6) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)
- 7) DRAWING CONFORMS TO JEDEC TO-236, VARIATION AB.

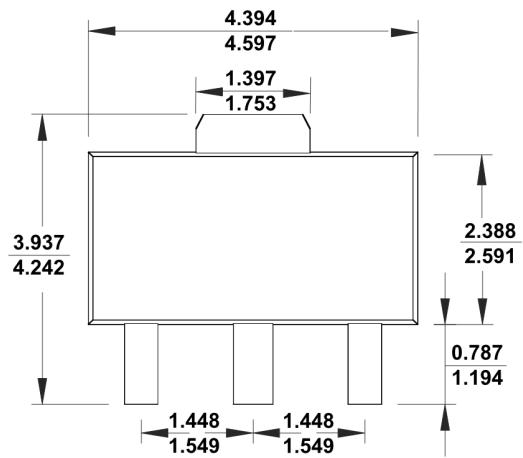

PACKAGE OUTLINE DRAWING FOR SOT23-5


TOP VIEW

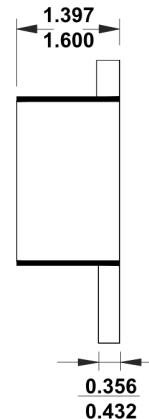

RECOMMENDED LAND PATTERN

FRONT VIEW

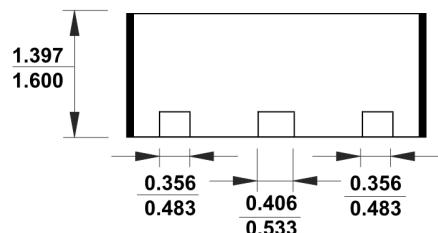
SIDE VIEW



DETAIL "A"

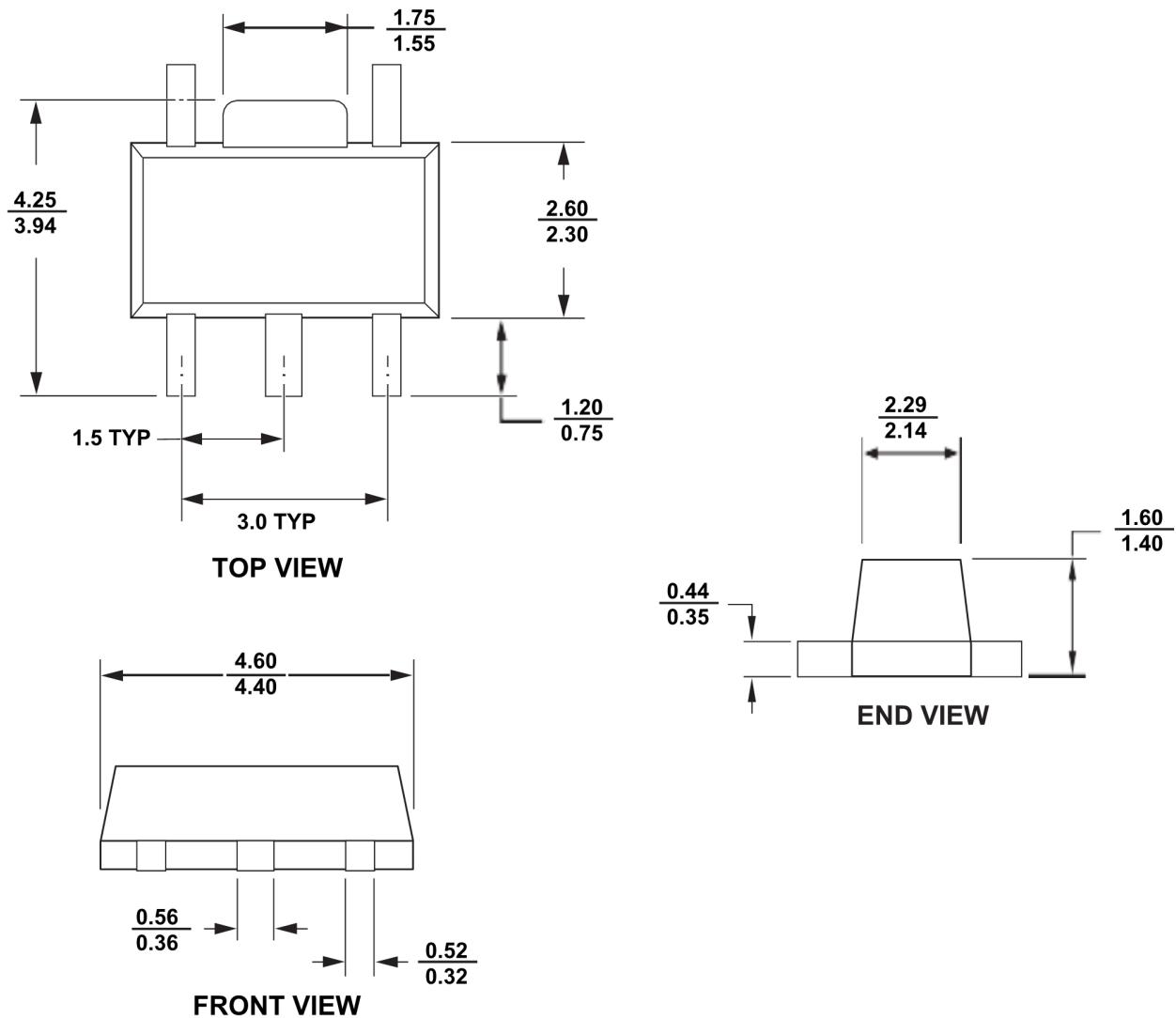

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING IS NOT TO SCALE.
- 6) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)
- 7) DRAWING CONFORMS TO JEDEC TO-236, VARIATION AB.


PACKAGE OUTLINE DRAWING FOR SOT89-3

TOP VIEW

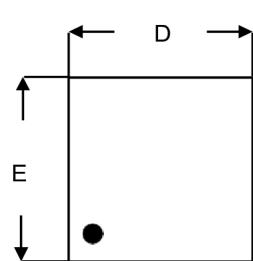
SIDE VIEW

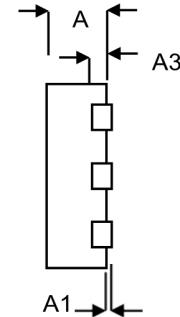


FRONT VIEW

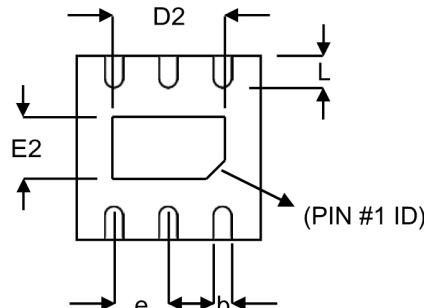
NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING IS NOT TO SCALE.
- 6) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)

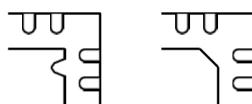

PACKAGE OUTLINE DRAWING FOR SOT89-5


NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING IS NOT TO SCALE.
- 6) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)


PACKAGE OUTLINE DRAWING FOR DFN2x2-6L

TOP VIEW


SIDE VIEW

BOTTOM VIEW

DFN2020-6L		
Dim	Min	Max
A	0.500	0.600
A1	0.000	0.050
A3	0.152 REF	
b	0.250	0.35
D	1.900	0.210
D2	1.550	1.750
E	1.900	0.210
E2	0.086	1.060
e	0.650 BSC	
L	0.224	0.376

All Dimensions in mm

DETAILA

PIN #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

NOTE:

- 1) ALL DIMENSIONS ARE IN MILLIMETERS.
- 2) PACKAGE LENGTH DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURR.
- 3) PACKAGE WIDTH DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
- 4) LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.10 MILLIMETERS MAX.
- 5) DRAWING IS NOT TO SCALE.
- 6) PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT, (SEE EXAMPLE TOP MARK)