

1000mA ,40V Synchronous Step-Down Converter

DESCRIPTION

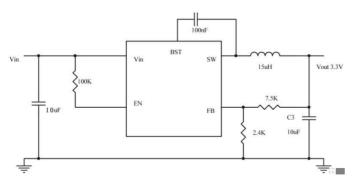
The XR8440 is a current mode monolithic buck switching regulator. Operating with an input range of

4.7~40V,the XR8440 delivers 1A of continuous output current with two integrated N-Channel MOSFETS. The internal synchronous power switches provide high efficiency without the usefa external Schottky diode. XR8440 also employs a proprietary control scheme that switches the device into a power save mode during light load, thereby extending the range of high efficiency operation. An OVP function protects the IC itself and Thermal

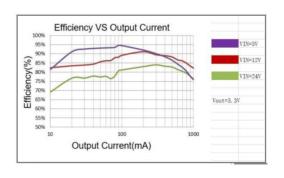
shutdown provides reliable, fault-tolerant operation. With this OVP function, the IC can stand off input voltage as 42V, making it an ideal solution for industrial applications such as smart meters as well as automotive applications. A 3uA shutdown mode quiescent current allows use in a battery-powered applications.

FEATURES

- ❖ ₩ Input Operating Range from 4.7V to 40V
- ❖ Capable of DeliveringA
- No External Compensation Needed
- ❖ Current **b**€ control
- Up to 93% efficiency
- ❖ Internet Soft-Start
- ❖ 700KHz switching frequency
- ❖ Boccircuit protection
- ❖ BlAw shutdown supply current
- ❖ Sbe with ceramic output capacitors
- Thermal protection and UVLO
- ❖ Availablen SOT23-6 package

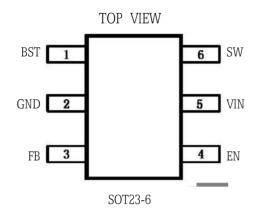

ORDERING INFORMATION

PART#	PACKAGEPN	MQ		
XR8440	SOT23-6	3,000PCS		


APPLICATIONS

- Smart Meters
- Industrial Applications
- Automotive Applications

TYCA APPLICATION


3.3V/1A Step Down Regulators

Efficiency vsbd Current (Vout=3.3V)

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

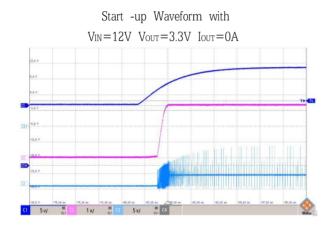
IN Voltage	0.3V to 44V
SW,EN Voltage	0.3V to VIN+0.36V
BST Voltage	0.3V to SW+5V
FB Voltage	0.3V to 6V
SW to ground current	Internally limited
Operating Temperature Range	40°C to 150°C
Thermal Resistance	$oldsymbol{ heta}$ JA $oldsymbol{ heta}$ JC
SOT23-6	220130°C/W

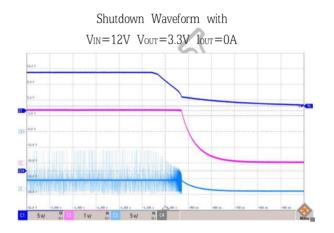
ELECTRICAL CHACRACTERISTICS

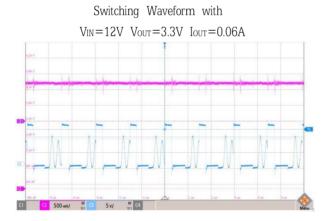
($V_{IN}=12V$,unless otherwise specified. Typical values are at $T_A=25^{\circ}C$.)

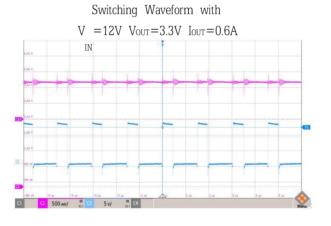
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Standoff Voltage			42		V
Input Voltage Range		4.7		42	V
Input UVLO	Rising, Hysteresis = 300mV		4.5		V
Input OVP	Rising, Hysteresis = 1.5V		42		V
Input Supply Current	V _{FB} =0.90V		0.35		mA
Input Shutdown Current			3		μΑ
FB Feedback Voltage		0.784	0.800	0.816	V
FB Input Current			0.1		μΑ
Switch Frequency		630	700	770	KHz
Maximum Duty Cycle			98		%
FoldBack Frequency	V _{FB} =OV		60		KHz
High side Switch On Resistance	Isw=100mA		550		mΩ
Low side Switch On Resistance			300		$m\Omega$
High side Switch Current Limit			1.2		А
SW Leakage Current	V _{IN} =12V,V _{SW} =0,EN=GND			3	μΑ
EN Input Current	VIN=12V, VEN=5V		1	5	μΑ
EN Input Low Voltage	Rising, Hysteresis = 200mV		1.5		V
Thermal Shutdown	Hysteresis=40°C		150		$^{\circ}$

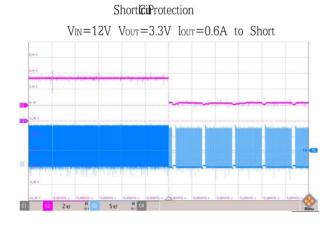
PIN DESCRIPTION

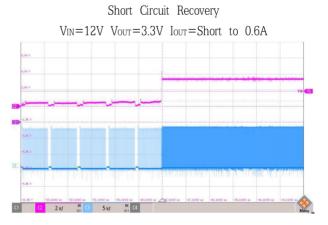

PIN#	NAME	DESCRIPTION
1	BST	Bootstrap pin. Connect a 100nF capacitor from this pin to SW
2	GND	Ground
3	FB	Feedback Input.Connect an external resistor divider from the output to FB and GND to set Vout

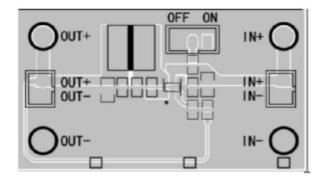


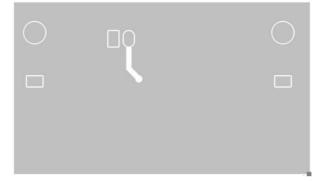

PN#	NAME	DESCRIPTION	
4	EN	Ealpinothe IC. Drive this jungton be the ptLw to disable	
5	IN	Supply Voltage. Bypass with a 10μ Featura pacitor to GND	
6	SW	Inductor Connection.Connect an inductor Between SW and the regulator output	


TYPICAL CHARACTERISTICS


(Typical values are at AR25C ness otherwise specified.)







PCB GUIDELINE

Top Layer

Bottom Layer

FUNCTIONAL DESCRIPTION

The XR8440 is a synchronous, current-mode, step-down regulator It regulates input voltages from 4.7V to 40V down to an output voltage as low as 0.8V, and is capable of supplying up to 1A of load current.

Current-Mode Control

The XR8440 utilizes current-mode control to regulate the output voltage. The output voltage is measured at the FB pin through a resistive voltage divider and the error is amplified by the internal transconductance error amplifier.

Output of the internal error amplifier is compared with the switch current measured internally to control the output current.

Shut-Down Mode

The XR8440 shuts down when voltage at EN pin is below 0.7V. The entire regulator is off and the supply current consumed by the XR8440 drops below 3uA.

Power Switch

N-Channel MOSFET switches are integrated on the XR8440 to down convert the input voltage to the regulated output voltage. Since the top MOSFET needs a gate voltage great than the input voltage ,a boostrap capacitor connected between BST and SW pins is required to drive the gate if the top switch. The boostrap capacitor is charged by the internal 5V rail when SW

is low.

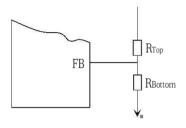
Vin Under-Voltage Protection

A resistive divider can be connected between Vin and ground, with the central tap connected to EN, so that when Vin drops to the pre-set value, EN drops below 1.5V to tigger input under voltage lockout protection.

Thermal Protection

When the temperature of the XR8440 rises above 150°C , it is forced into thermal shut-down.

Only when core temperature drop below 110°C can the regulator becomes active again.


PPLICATION INFORMATION

Output VigSe

Out voltage aresby external resistors. The B threshold is 0.8V.

The following table lists the recommended values.

VOUT(V)	Ro(kΩ)	R воттом($k\Omega$)
2.5	4.99	11
3.3	2.4	7.5
5	2.1	11.2

Ipt Capacitor

The input capacitor is used to supply the AC input current to the step-down converter and maintaining the DC input voltage. The ripple current through the input capacitor can be calculated by:

Ic1=Ioad •
$$\sqrt{\frac{V_{\text{OUNT}}}{V_{\text{IN}}}} \cdot \left(1 - \frac{V_{\text{OUNT}}}{V_{\underline{\text{IN}}}}\right)$$

Where $\mbox{$\rm Iload$}$ is the load current, $\mbox{$Vou$}\mbox{$\rm is$}$ the input voltage.

This input capacitorabe calculated by the following equowhen the input ripple voltage is determined.

Where C is the input capacitance value, fs is the switching frequency, $\Delta\,V_N$ is the input ripple current.

The input capacitor can be electrolytic,tantalum or ceramic.To minimizing the potential noise,a small X5R or X7R ceramic capacitor,i.e.0.1uF,should be placed as close to the IC as possible when using electrolytic capacitors.

A 10uFeaicapacitor is recommended in typical application, and anet 47uF electrolytic capacitor is needed if

htpligs required.

Output Capacitor

The output capacitor is required to maintain the DC output voltage, and the capacitance value determines the output ripple voltage. The output voltage ripple can be calculated by:

$$\Delta V_{\text{OUT}} = \frac{V_{\text{OUT}}}{F_{\text{S}} \bullet L} \bullet \left(1 - \frac{V_{\text{OUT}}}{V_{\text{IN}}}\right) \bullet \left(R_{\text{ESR}} + \frac{1}{8 \bullet f_{\text{S}} \bullet C_{2}}\right)$$

equivalentes resistance value of the output capacifish. Whereis the output capacitance value and R is the

The output capacitor can be low ESR electrolytic,tantalum or ceramic,which lower ESR capacitors get lower output ripple voltage.

The output capacitors also affect the system stability and transient response, and a 10uF ceramic capacitor is recommended in typical application.

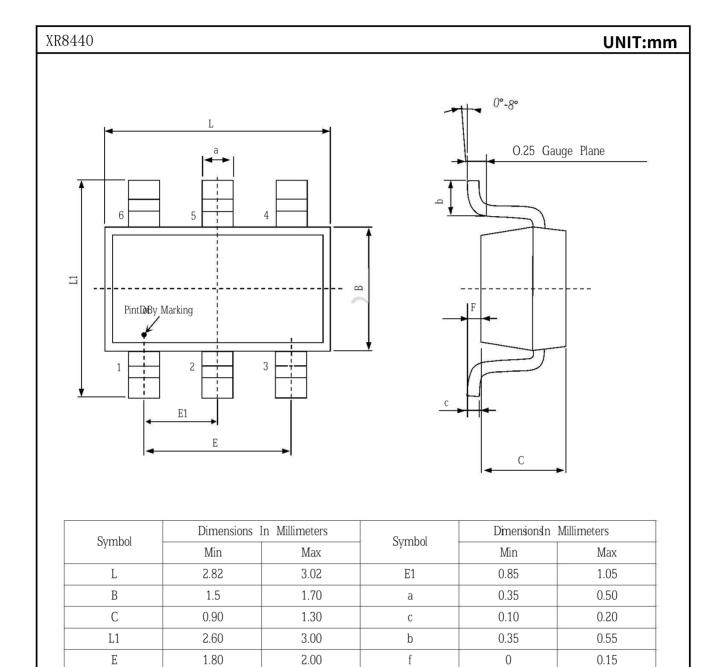
Inductor

The inductor is used to supply constant current to the output load, and the value determines the ripple current which affect the efficiency and the output voltage ripple. The ripple current is typically allowed to be 30% of the maximum switch current limit, thus the inductance value can be calculated by:

$$\frac{\overset{=}{V_{OUT}}}{f_{s} \bullet \Delta I_{L}} \bullet \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

Where V is the input voltage, V is the output voltage, fs is the switch frequency, and Δ In is the peak-to-peak inductor ripple current.

External Boostrap Capacitor


A boostrap capacitor is required to supply voltage to the top switch diver. A 0.1uF low ESR ceramic capacitor is recommended to connected to the BST pin and SW pin.

Other Components Selection

Vo(V)	Co(µF)	L(μ H)
8	22	15 to 22
5	22	10 to 15
3.3	22	6.8 to 10

PACIA CE OTNE

Re0202007

